คู่มือการใช้ Agisoft PhotoScan Professional Edition

การสร้างไฟล์งาน

ขั้นตอนแรกเปิดโปรแกรม Agisoft PhotoScan ขึ้นมาแล้วกดคำว่า add chunk เพื่อสร้างไว้เก็บรวบรวมภาพ โดยหนึ่งงานไม่จำเป็นต้องมี 1 chunk เสมอไปอาจจะมีหลายๆ chunk ก็ได้ถ้าพื้นที่ที่เราเก็บข้อมูลมีหลายส่วน โดยแต่ละส่วนสามารถนำมารวมกันได้ถ้ามีจุดที่เหมือนกันหรือมีจุดที่เราใส่ค่าพิกัดที่มีค่าเท่ากัน

หลังจากเราสร้าง chunk ขึ้นมา แล้วคลิกขวาที่ chunk เพื่อ add photo นำภาพที่เราเก็บไว้มาใส่

ขั้นตอนที่2 (Align Photo)

หลังจากสร้าง chunk เรียบร้อยแล้วเราจะมาเริ่มโปรเสสงานโดยจะไปที่ workflow โดยจะเห็นได้ว่ามีขั้นตอน ต่างๆ เริ่มตั้งแต่ Align Photo จะมีตัวหนังสือสีดำ แล้วตัวอื่นๆเป็นสีเทา หมายความว่า เราต้องทำการโปรเสส Align Photo ให้เสร็จก่อนถึงจะทำขั้นตอนถัดไปได้

คลิกที่ Align Photo แล้วจะได้หน้าต่างแบบนี้ ซึ่งก็จะสามารถเลือกค่าฟังก์ชั่นหรือความละเอียดต่างๆได้ ตาม ความต้องการของงานเรา โดยขั้นตอนนี้จะเป็นขั้นตอนการนำภาพมาจัดเรียงแล้วเลือกเอาจุดของภาพที่เหมือนกัน มาสร้างโมเดล

📕 Align Photos		×		
▼ General				
Accuracy:	2	Highest 🔻		
Pair preselection:	-0	Reference 👻		
▼ Advanced				
Key point limit:		40,000		
Tie point limit:		4,000		
Constrain features by mask				
Adaptive camera model fitting				
C	К	Cancel		

Accuracy ก็จะมีให้เลือก 5 แบบ แสดงถึงความถูกต้องของงาน

- Highest จะมีความถูกต้องของจุดข้อมูลสูงสุด ทำให้ใช้เวลาโปเสสนานมาก
- Iowest จะมีความถูกต้องต่ำสุด ใช้เวลาน้อยที่สุด

ซึ่งถ้าเลือก Highest แล้วไม่มีสามารถ align photo ได้ก็ต้องมีการเลือกความละเอียดให้สูงขึ้นกว่าเดิม อาจเป็น medium หรือ low

Pair preselection จะมีให้เลือก 3 แบบ

- Disabled จะคำนวณแบบทั่วไปโดยรวม
- Generic จะคำนวณพื้นที่ทับซ้อนกันของภาพที่ความละเอียดต่ำที่สุดที่สามารถนำภาพมาคัดเลือกจุดได้ โดยไม่ต้องมีค่าพิกัดของภาพ
- Reference จะคำนวณแบบมีค่าอ้างอิงสูงต่ำ โดยภาพนั้นต้องมีค่ำ พิกัด x,y,z จะทำให้สามารถจัดเรียง ภาพและคำนวณได้เร็วขึ้น

Key point limit ไม่มีการปรับแก้ คือใช้ค่าตั้งต้น มีไว้สำหรับเวลาจัดเรียงรูปภาพจะนำจุดที่เหมือนกันตามค่าที่ เราใส่ ถ้าไม่สามารถเรียงภาพได้ ก็อาจจะมีการเพิ่มตัวเลขให้มากขึ้น แต่ก็จะใช้เวลาในการคำนวณมากขึ้นตามไป ด้วย

Tie point limit ค่านี้แสดงถึงค่าที่บ่งชี้ว่าในภาพมีจุดที่เหมือนกัน แล้วเลือกจุดที่ซ้ำกันมาเรียบเรียงเป็นโมเดล

Adaptive camera model fitting เลือกคลิกถูกไว้เพื่อที่โปรแกรมสามารถปรับจำนวนมากน้อยของจุดตาม ความเหมาะสมได้

เมื่อเลือกได้แล้วก็กด OK ก็จะเริ่มคำนวณ

Processing in progress	\times
Detecting points	
46% done, 00:00:42 elapsed, 00:00:49 left	
Overall progress:	
Minimize Pause Cancel	

ขั้นตอนถัดไปหลังจากที่คำนวณ Align Photo เสร็จแล้ว ก็ต้องมาเช็คว่าภาพที่เรา align นั้นจัดเรียงภาพได้ครบทุก ภาพไหมโดยคลิกขยายลูกศรที่หน้า chunk จากตัวอย่างเราจะเห็นได้ว่า ภาพจัดเรียงและสามารถคำนวณครบทุก ภาพ (39/39 aligned)

*ในกรณีที่ไม่ครบ แก้ไขโดยเข้าไปดูว่า ภาพไหนที่มีตัวอักษร NA แสดงว่าภาพนั้นไม่สามารถสามารถคำนวณได้เรา ต้องกดเลือกภาพทั้งหมดแล้วคลิกขวา เลือก align selected cameras ทำซ้ำไปเรื่อยๆจนกว่าจะหายครบทุกภาพ แต่ถ้ำทำแล้วไม่หายแสดงว่าภาพนั้นไม่สามารถ คำนวณได้

ขั้นตอนที่ 3 (Dense Cloud)

หลักจาก align photo เสร็จแล้ว ควร Save งานก่อน ครั้งหนึ่ง ไปที่ File > save as เลือกที่เก็บแล้วกด save

ไปที่ Work Flow จะเห็นว่าบรรทัดถัดไปจะมีตัวหนังสือสีดำโผล่เพิ่มขึ้นมา แสดงว่าเราสามารถทำขั้นตอนถัดไปได้ โดยเราจะทำขั้นตอน Dense Clound ก่อน เพื่อเพิ่มจำนวนจุดของ tile point ให้มากขึ้นก่อนที่จะไปสร้างพื้นผิว ในขั้นตอน Mesh หรือถ้าคิดว่าเรามีจำนวน tile point มากพอแล้วเราสามารถข้ามไปทำขั้นตอน mesh ได้เลย

Build Dense Cloud	×
▼ General Quality:	High 💌
 Advanced Depth filtering: Reuse depth maps 	Aggressive 🔻
ОК	Cancel

Quality จะมีให้เลือก 5 แบบ แสดงถึงความละเอียดของจุดที่ต้องการเพิ่มขึ้นมา

- Ultra high จะมีความละเอียดของจุดข้อมูลสูงสุด ทำให้ใช้เวลาโปเสสนานมาก
- Iowest จะมีความละเอียดต่ำสุด ใช้เวลาน้อยที่สุด

Depth fitering มีให้เลือกอยู่ 4 แบบซึ่งแต่ละแบบก็จะมีความต่างกัน

- Disabled แบบทั่วไปไม่เจาะจง มีการเพิ่มจำนวนจุดขึ้นมา
- Mild จะเป็นการเพิ่มรายละเอียดไม่มากจนเกินไปเน้นให้ผิวเรียบสมูท
- Moderate จะเป็นการเพิ่มจำนวนจุดให้พอดีสม่ำเสมอทำให้ข้อมูลไม่ขรุขระจนเกินไป
- Aggressive จะเป็นการลงรายละเอียดเพิ่มจุดให้เยอะๆ มีความละเอียดสูงแต่ถ้ำข้อมูลไม่เพียงพออาจทำ ให้ผิดเพี้ยนได้

หลังจากนั้นก็กด OK รอให้คำนวณเสร็จ

Processing in progress	\times
Reconstructing depth	
5% done, 00:02:16 elapsed, 00:00:10 left	
Overall progress:	
Minimize Pause Cancel	

แต่ถ้ามีภาพสีฟ้าๆ(ตำแหน่งจุดเปิดถ่ายของกล้อง) บดบังมุมมองโมเดล สามารถ กด ปิด/เปิด รูปกล้องนี้ได้

ขั้นตอนที่ 4 (Build Mesh)

หลังจากเสร็จกระบวนการ Dense Cloud แล้วก็ปฏิบัติขั้นตอนถัดไป คือ Mesh

Build Mesh	×
▼ General	
Surface type:	Arbitrary 👻
Source data:	Dense cloud 🔹
Face count:	High (2,913,512) 🔻
▼ Advanced	
Interpolation:	Disabled 👻
Point classes: All	Select
OK	Cancel

Suface type จะมีให้เลือก 2 แบบ คือ

- Height field จะคำนวณภาพพื้นผิวแบบระนาบตั้งฉากภูมิประเทศ มองจาก top view เหมาะสำหรับทำ แผนที่ ภูมิประเทศ เพราะใช้ RAM น้อย คำนวณเสร็จไวกว่าแบบ Arbitrary
- Arbitrary จะใช้การคำนวณพื้นผิวในทุกทิศทุกทางเพื่อให้โมเดลมีความราบเรียบ เหมาะสำหรับทำโมเดล วัตถุ หรือโมเดลปิด เป็นรูปร่าง แต่ใช้ RAM มาก ใช้เวลานานในการคำนวณ

Source data แหล่งที่มาของข้อมูลเลือกเอาว่าจะเอาจุดจากขั้นตอนไหนมาสร้างพื้นผิว

- Sparse Cloud จะนำข้อมูลมาจาก tile point จากขั้นตอน align photo
- Dense Cloud จะนำข้อมูลจากขั้นตอนก่อนหน้ามาคำนวณ

Face count ก็ให้เลือกความละเอียดของพื้นผิวโดยจะบอกจำนวนโดยประมาณของหน้าโครงข่ายที่เชื่อมกัน ระหว่างจุดแต่ละจุด

Processing in progress	×
Generating mesh	
6% done 00:00:23 elansed 00:05:50 left	
Overall progress:	
Minimize Pause Cancel	

Interpolation เป็นการปรับแก้พื้นผิวข้อมูลโดยการประมาณค่า

- Disabled จะเป็นการเพิ่มจุดเพื่อให้พื้นผิวสอดคล้องกับความเป็นจริง
- ➢ Enabled (default) จะเป็นการปรับให้เหมาะสม ถ้าพื้นที่ตรงไหนมีจุดเพียงพอก็จะไม่สร้างเพิ่ม
- Extrapolated จะเป็นการขยายขนาดรัศมีของจุดแต่ละจุดให้ครอบคลุมพื้นที่ เพิ่มจุดน้อยมาก (เพิ่มเท่าที่ จำเป็น)

ขั้นตอนที่ 5 (Build Texture)

หลังจากที่เสร็จจาก build mesh แล้วเราจะทำขั้นตอนถัดไปนั่นก็คือ build texture เป็นการนำพื้นสีของภาพมา ใส่ในโมเดลของ ทำให้โมเดลมีสีสันสวยงามมีความละเอียดของเม็ดสีเพิ่มขึ้น

Build Texture	×
General	
Mapping mode:	Generic 💌
Blending mode:	Mosaic (default) 🔹
Texture size/count:	4096 x 1 🔶
▼ Advanced	
Enable color correction	
Enable hole filling	
ОК	Cancel

Mapping mode จะมีให้เลือกตามความเหมาะสม

- Generic ทำให้ภาพมีสีทั่วไป
- Orthophoto จะเน้นทางภาพ top view อย่างเดียว
- Adaptive Orthophoto ก็จะเน้นทางภาพให้ตั้งฉาก top view และด้านข้างเล็กน้อยปรับให้พอดี
- Spherical จะเน้นทำให้ภาพเป็นทรงกลม
- Single Camera จะเป็นการนำสีของภาพๆเดียวมาใส่ในโมเดลส่วนของภาพนั้นๆ

Blending mode การปรับสี

- Mosaic (default) ซึ่งเป็นค่าเริ่มต้น
- Average จะใช้ค่าเฉลี่ยของพิกเซลของภาพ Max intensity จะเลือกภาพที่มีความเข้มสูงสุดของพิกเซล Min intensity เลือกภาพที่มีความเข้มต่ำสุดของพิกเซล
- Disabled ทั่วๆไป

Texture size/count ค่าพิกเซลของของโมเดล ยิ่งมากยิ่งละเอียด แต่ปกติใช้ค่าเริ่มต้น 4096

ขั้นตอนที่ 6 การทำจุดควบคุมภาพ (Ground Control Point : GCP)

หลังจากโปรเสส 4 ขั้นตอนเสร็จ Align photo > Dense Cloud > Mesh > Texture เรียบร้อยแล้วจะทำการ ปรับความถูกต้องเชิงตำแหน่งของโมเดลให้มีความถูกต้องมากขึ้นกว่าเดิม โดยการเพิ่ม Marker โดยคลิ๊กขวาที่จุดที่ เราทราบค่าตำแหน่งนั้นๆซึ่งเรียกวิธิการนี้ว่า การทำจุดควบคุมภาพ (Ground Control Point : GCP) โดยการ เลือก Create marker

เมื่อ create maker แล้วมำดูทำงด้านซ้ายมือในแถบ reference จะเห็นรูปธงสีฟ้าให้ตั้งชื่อจุดและกรอกใส่ค่ำพิกัด x ,y,z ถ้าหาแถบเครื่องมือไม่เจอให้คลิ๊กขวาที่บนแถบตามรูปแล้วเลือกเมนู reference สามารถเปิด/ปิด รูปธงได้ ตามไอคอนดังภาพรูปธง

หลังจากเมื่อใส่ marker ครบแล้ว(อย่าลืมกด Save ก่อนเดี่ยวจะกลับมาแก้ไขไม่ได้ถ้าไปขั้นตอนถัดไป) ให้กดตรง update ที่เป็น ไอคอนรูปลูกศรสีฟ้า จากนั้นกด Optimize camera รูปไฟฉายสีส้ม แล้วก็จะมีพารามิเตอร์ต่างๆ ให้เลือกไม่ต้องสนใจกด OK ไปเลย จากนั้นจะสังเกตเห็นค่า error ได้โดยค่านี้จงบ่งบอกถึงว่าตำแหน่งค่าความ เท่าไหร่

หลังจากที่กด optimize camera เสร็จแล้ว โมเดลที่เราสร้างจะทำการกระจัดกระจายกลับมาเป็นจุดอีกครั้งโดย จุดครั้งนี้จะมีความถูกต้องเชิงตำแหน่งกว่าเดิม ซึ่งเราต้องทำการโปรเสสอีกครั้งหนึ่งโดยเริ่มจาก Dense Cloud > Mesh > Texture ถือเป็นการเสร็จสิ้นกระบวนการโปรเสสพื้นฐาน

*** หกกเกิดปัญหาหลังจาก optimize แล้วไม่สามารถขึ้นโมเดลได้มีการบิดหรือม้วน แสดงว่ามีการใส่ค่าพิกัดใน marker ผิดหรือสลับตำแหน่งกัน ควรเช็คก่อนว่ามีค่า error เยอะเกินความจริงหรือไม่หลังจำกที่เรากด update ถ้ำไม่มากเกินไปก็ optimize เพื่อปรับแก้แต่ถ้ามากเกินไปควรเช็คดูค่าพิกัดแต่ละจุดว่ามีจุดไหนที่ค่า error เยอะ และพิจารณาตัดออกไป หากไม่สามารถแก้ไขได้

กระบวนการโปรเสสพื้นฐานเบื้องต้นนั้น สามารถส่งออกข้อมูลได้คือ

1.ส่งออกข้อมูลจุด (point cloud) โดยไปที่ File > Export point แล้วเลือกไฟล์นำสกุลที่เราต้องการ

2.ส่งออกข้อมูลโมเดล โดยไปที่ File > Export model แล้วเลือกไฟล์นามสกุลที่เราต้องการ

การสร้าง DEM

หลังจากเสร็จสิ้นกระบวนการโปรเซสพื้นฐานหลัก 4 ขั้นตอน ก่อนการโปรเซส Build DEM ต้องเช็คก่อนว่า marker แล้วเปลี่ยนเข้าระบบพิกัดแล้วหรือยัง ถ้ายังจะไม่สามารถกดโปรเซสได้ แต่ถ้ากดได้แสดงว่าเปลี่ยนระบบ พิกัดแล้ว เลือกระบบพิกัด จากนั้น กด OK

Build DEM ×	Processing in progress X
Coordinate System	
WGS 84 / UTM zone 47N (EPSG::32647) 💌	Generating DEM
Parameters	
Source data: Dense doud 🔻	
Interpolation: Enabled (default)	75% done. 00:00:21 elansed. 00:00:03 left
Point classes: All Select	
Region	Overall progress:
Setup boundaries: 708608.460 - 709572.541 X	
Reset 1448616.804 - 1449673.463 Y	
Resolution (m/pix): 0.169207	
Total size (pix): 5696 x 6243	
OK Cancel	Minimize Pause Cancel

หลังจากโปรเซสเสร็จแล้วสามารถเข้าไปดูผลได้ที่ทางด้านซ้ายมือใน chunk ของงานเราตัวอย่างดังรูป

้สำมารถนาไฟล์ข้อมูล (ไฟล์ DEM)ออกไปใช้งานได้โดย คลิกขวาที่ DEM > export

หรือไปที่ File > export DEM > export TIFF/BIL/.. > export

หลังจากได้ไฟล์ DEM แล้ว สามารถสร้างคอนทัวร์ เพื่อซ้อนทับลงในDEM หรือ ส่งออกได้ โดยไปที่ Tools > Generate Contours... > เลือกปรับ Interval(m) ตามค่าระดับที่ต้องการ > เช็คถูกที่ Simplify contours > OK

การสร้างภาพออโท (orthomosaic)

หลังจากการโปรเซสขั้นตอนหลักเสร็จนั้นถ้าเราต้องการ ภาพออโท ซึ่งเป็นภาพตั้งฉากที่มาความละเอียดสูงและมี ความถูกต้องเชิงตำแหน่ง โดยเริ่มแรกเราต้องกำหนดระบบพิกัดของภาพ โดยคลิกที่ setting ดังรูป

📕 Build Orthomosai	c			×
Projection				
Type:	🔿 Plan	ar	Geographic	
WGS 84 / UTM zone	47N (EPSG	::32647)		~
Parameters				
Surface:		DEM		•
Blending mode:		Mosaic (defau	t)	•
Enable color corre	ection			
Pixel size (m):		0.05		х
Metres		0.05		Y
🔿 Max. dimension (j	oix):	4096		
Region				
Setup boundaries	:	-		x
Estimate		-		Y
Total size (pix):		x		
L	OK	Cancel		

แล้วเลือกระบบพิกัดที่ต้องการหากไม่มีให้กดคำว่า More... ในตัวอย่างนี้เราจะใช้ระบบพิกัด WGS 84 /UTM Zone 47N

ข้อควรระวัง

1.ประเทศไทย จะแบ่งโซนหลักๆ เป็น 2 โซน คือ 47 และ 48

2.ใช้ระบบพิกัดของภาพเป็นระบบเดียวกันกับพิกัดของจุดควบคุมภาพ GCP

การกำหนดค่าพิกัดให้เข้าไปที่ Projected Coordinate systems > world geodetic system 1984 > WGS 84 /UTM Zone 47Nเมื่อเลือกได้แล้วก็กด OK

Processing in progress	\times				
Orthorectifying images					
11% done, 00:00:19 elapsed, 00:02:01 left					
Overall progress:					
Minimize Pause Cancel					

เมื่อโปรเซสเสร็จแล้ว ส่งออกข้อมูลภาพออโท (ภาพตั้งฉาก) โดยไปที่ File > Export orthomosic > Export JPEG/...> export แล้วเลือกไฟล์นามสกุลที่เราต้องการ

หรือถ้าต้องการให้แสดงภาพซ้อนทับบน google earth ให้ File > Export orthomosic > Export Google KMZ > export

ตัวอย่างเวลาเปิดด้วย Google earth จะได้ภาพที่ซ้อนทับบน google earth พอดี

การสร้างรายงานผล

จากขั้นตอนการโปรเสสของเราให้รายงานผลว่าเราทาอะไรบ้าง ขั้นตอนไหนใช้อะไร ผลมีความคาดเคลื่อนมากน้อย เพียงใดนั้น ทำได้โดยไปที่ > File > Generate Report...> OK > Save

📕 Generate Report		
General		
Title:	Agisoft PhotoScan	
	Processing Report	
Description:		
Projection:	Top XY	-
	OK Cancel	

Save As								×
$\leftarrow \rightarrow \land \uparrow$	> This	PC → Local Disk (E:)	> SKP		ע ט Sear	ch SKP		ζ
Organize 🔻 Ne	w folder							?
a OneDrive	^	Name	^	Date modified	Туре	Size		
💻 This PC		skp.files		11/17/2017 10:31	File folder			
E Desktop								
Documents								
🖊 Downloads								
👌 Music								
Pictures								
📑 Videos								
🏪 Local Disk (C:)							
CD Drive (D:)								
Local Disk (E:))							
ill Network	~							
File <u>n</u> ame:	Report							~
Save as <u>t</u> ype:	PDF Doo	uments (*.pdf)						~
∧ Hide Folders						<u>S</u> ave	Cancel	

เสร็จสิ้นขั้นตอนปฏิบัตฺงาน